PR	REVIOUS	EXAMS	QUESTION	I S	E X E R C I S E – I
1.	If \vec{F} = ($60\hat{i} + 15\hat{j} -$	$3\hat{k}$) N and	7.	A force of $(3\stackrel{{}_{\scriptstyle i}}{i+}4\stackrel{{}_{\scriptstyle j}}{j})$ newton acts on a body and
	$\vec{v} = (2\hat{i} - 4\hat{j})$ power is : (1) 195 watt (3) 75 watt	$\hat{\mathbf{j}}$ + 5 $\hat{\mathbf{k}}$) m/s, then (2) 45 (4) 10	[AIPMT 2000]		displaces it by $(3\hat{i}+4\hat{j})$ metre. The work done by the force is : [AIIMS 2001] (1) 10J (2) 12J
2.	$\dot{\mathbf{E}}$ (1) π rad (3) $\frac{\pi}{4}$ rad	ween vectors $(\vec{A} \ [CMC]$ (2) $\frac{\pi}{2}$ (4) zer	Ludhiana 2000] rad	8. 9.	(3) 19J (4) 25J The vector $\vec{P} = a\hat{i} + a\hat{j} + 3\hat{k}$ and $\vec{Q} = a\hat{i} - 2\hat{j} - \hat{k}$ are perpendicular to each other. The positive value of ais: [EAMCET 1998, AIIMS 2002] (1) 3 (2) 2 (3) 1 (4) zero The vector sum of two forces is perpendicular to the investor difference. To that each the force is
5.		$3\hat{j} + 6\hat{k} \text{ and } \vec{B} = -\hat{i}$ - $2\hat{k}$		10.	their vector difference. In that case, the force : (1) Are equal to each other. [AIPMT 2003] (2) Are equal to each other in magnitude. (3) Are not equal to each other in magnitude. (4) Cannot be predicted. If three vectors satisfy the relation $\vec{A}.\vec{B} = 0$ and
	(3) $\frac{1}{49} \Big[3\hat{i} + 6\hat{j} \Big]$ (4) $\frac{1}{49} \Big[3\hat{i} + 6\hat{j} \Big]$	$+2\hat{k}$		11	$\vec{A}.\vec{C} = 0$, then \vec{A} can be parallel to [FCET 2003] (1) \vec{C} (2) \vec{B} (3) $\vec{B} \times \vec{C}$ (4) $\vec{B}.\vec{C}$
4.	towards north. (1) zero (2) along west	ints vertically up The vector produc		11.	The direction of the angular velocity vector is along : (1) the tangent to the circular path [AIIMS 2004] (2) the inward radius (3) the outward radius (4) the axis of rotation What is the projection of $3\hat{i} + 4\hat{k}$ on the y-axis ?
5.	be in equilibri	llowing sets of con	current forces may [KCET 2000]	13.	(1) 3 (2) 4 [RPMT 2004] (3) 5 (4) zero If a vector $(2\hat{i} + 3\hat{j} + 8\hat{k})$ is perpendicular to the
6.	(2) $F_1 = 3N, 11$ (3) $F_1 = 3N, 12$ (4) $F_1 = 3N, 12$ Two vectors of	$F_{2} = 5N, F_{3} = 9N$ $F_{2} = 5N, F_{3} = 6N$ $F_{2} = 5N, F_{3} = 15N$ f equal magnitude		14.	vector $(4\hat{j} - 4\hat{i} + \alpha\hat{k})$, then the value of α is : (1) -1 (2) 1/2 [AIPMT 2005] (3) -1/2 (4) 1 Square of the resultant of two forces of equal mag-
	equal to eithe between them i (1) 60° (3) 105°	er of them in magn: .s : (2) 90' (4) 12	[AIIMS 2001]		nitude is equal to three times the product of their magnitude. The angle between them is (1) 0° (2) 45° [KCET 2005] (3) 60° (4) 90°

- The vectors \vec{A} and \vec{B} are such that 15. $\left|\vec{A}+\vec{B}\right|=\left|\vec{A}-\vec{B}\right|$. The angle between vectors \vec{A} and \vec{B} is -[RPMT 1999, AIPMT 2006] (1) 90° (2) 60° (3) 75° (4) 45° **16.** If $|\vec{A} \times \vec{B}| = \sqrt{3} \ \vec{A} \cdot \vec{B}$, then the value of $|\vec{A} + \vec{B}|$ is: [AIPMT 2007] (1) $A^2 + B^2 + \frac{AB}{\sqrt{3}}$ (2) A + B (3) $(A^2 + B^2 + \sqrt{3} AB)^{1/2}$ (4) $(A^2 + B^2 + AB)^{1/2}$ 17. If $|\vec{A} \times \vec{B}| = |\vec{A}.\vec{B}|$, then the angle between \vec{A} and $\vec{\mathbf{B}}$ will be: [AMU 2007] (1) 30° (2) 45° (3) 60° (4) 75°
- **18.** A unit radial vector $\hat{\mathbf{r}}$ makes agles of $\alpha = 30^{\circ}$ relative to the x-axis, $\beta = 60^{\circ}$ ralative to the y-axis, and $\gamma = 90^{\circ}$ relative to the z-axis. The vector $\hat{\mathbf{r}}$ can be written as : **[AMU 2008]**

(1)
$$\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$$
 (2) $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$

(3)
$$\frac{\sqrt{2}}{3}\hat{i} + \frac{1}{\sqrt{3}}\hat{j}$$

(4) None of these

19. If \hat{i}, \hat{j} and \hat{k} represent unit vectors along the x, y and z-axes respectively, then the angle θ between the vectors $(\hat{i} + \hat{j} + \hat{k})$ and $(\hat{i} + \hat{j})$ is equal to :

[AMU 2009]

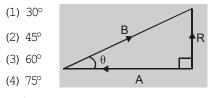
(1)
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (2) $\sin^{-1}\left(\sqrt{\frac{2}{3}}\right)$
(3) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (4) 90°

- 20. Find the torque of a force $\vec{F} = -3\hat{i} + \hat{j} + 5\hat{k}$ acting at the point $\vec{r} = 7\hat{i} + 3\hat{j} + \hat{k}$ [AIIMS 2009] (1) $14\hat{i} - 38\hat{j} + 16\hat{k}$ (2) $4\hat{i} + 4\hat{j} + 6\hat{k}$ (3) $-14\hat{i} + 38\hat{j} - 16\hat{k}$ (4) $-21\hat{i} + 3\hat{j} - 5\hat{k}$
- 21. Six vectors, \vec{a} through \vec{f} have the magnitudes and directions indicated in the figure. Which of the following statements is true ? [AIPMT 2010]

$$\vec{a} \qquad \vec{b} \qquad \vec{c}$$

$$\vec{d} \qquad \vec{e} \qquad \vec{f}$$

$$\vec{c} \qquad \vec{f}$$


Ε

BRAIN TEASERS

- 1. The angle that the vector $\vec{A}=2\,\hat{i}+3\,\hat{j}$ makes with y-axis is :
 - (1) $\tan^{-1}(3/2)$ (2) $\tan^{-1}(2/3)$
 - (3) \sin^{-1} (2/3) (4) \cos^{-1} (3/2)
- 2. Which one of the following statement is false :
 - (1) Mass, speed and energy are scalars
 - (2) Momentum, force and torque are vectors
 - (3) Distance is a scalar while displacement is a vector
 - (4) A vector has only magnitude where as a scalar has both magnitude and direction
- 3. In vector diagram shown in figure where (\vec{R}) is the

resultant of vectors $(\,\vec{A}\,)$ and $(\,\vec{B}\,)$. If ${\tt R} = \frac{B}{\sqrt{2}}$, the

value of angle θ is :

4. If \hat{n} is a unit vector in the direction of the vector \vec{A} , then :-

(1)
$$\hat{n} = \frac{\vec{A}}{|\vec{A}|}$$
 (2) $\hat{n} = \vec{A} |\vec{A}|$
(3) $\hat{n} = \frac{|\vec{A}|}{\vec{A}}$ (4) $\hat{n} = \hat{n} \times \vec{A}$

- 5. Two vectors \vec{A} and \vec{B} lie in a plane, another vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e. $\vec{A} + \vec{B} + \vec{C}$:
 - (1) Can be zero
 - (2) Cannot be zero
 - (3) Lies in the plane containing $\vec{A}~\&~\vec{B}$
 - (4) Lies in the plane containing $ec{B}$ & $ec{C}$
- 6. Given that $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$. This can be true when :
 - (1) $\vec{P} = \vec{Q}$
 - (2) $\vec{Q} = \vec{0}$
 - (3) Neither \vec{P} nor \vec{Q} is a null vector
 - (4) \vec{P} is perpendicular to \vec{Q}

- **EXERCISE II**
- The resultant of \vec{A} and \vec{B} makes an angle α with 7. \vec{A} and β with \vec{B} , then : (1) $\alpha < \beta$ (2) $\alpha < \beta$ if A < B(4) $\alpha < \beta$ if A = B(3) $\alpha < \beta$ if A > B8. Vector $\vec{\mathbf{p}}$ makes angle α , β and γ with the X,Y and Zaxes respectively. Then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ (1) 0 (2) 1 (3) 2 (4) 3 The direction cosines of a vector $\hat{i} + \hat{j} + \sqrt{2} \hat{k}$ are :-9. (2) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ (1) $\frac{1}{2}$, $\frac{1}{2}$, 1 (4) $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ Two vectors \vec{A} and \vec{B} are such that $\vec{A} + \vec{B}$ = \vec{C} 10. and $A^2 + B^2 = C^2$. Which of the following statements, is correct:-(1) \vec{A} is parallel to \vec{B} (2) \vec{A} is anti-parallel to \vec{B} (3) \vec{A} is perpendicular to \vec{B} (4) \vec{A} and \vec{B} are equal in magnitude **11.** A vector perpendicular to $\bigoplus_{i=1}^{n} \hat{j}$ may be : (1) $4\hat{i} + 3\hat{j}$ (2) $7\hat{k}$ $(3) 6\hat{i}$ (4) $3\hat{i} - 4\hat{i}$ Area of a parallelogram, whose diagonals are 12. $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$ will be: (2) $5\sqrt{3}$ unit (1) 14 unit (3) $10\sqrt{3}$ unit (4) $20\sqrt{3}$ unit **13.** If $\vec{A} = 3\hat{i} + 4\hat{j}$ and $\vec{B} = 6\hat{i} + 8\hat{j}$ and A and B are the magnitudes of \vec{A} and \vec{B} , then which of the following is not true? (2) $\frac{A}{B} = \frac{1}{2}$ (1) $\vec{A} \times \vec{B} = \vec{0}$ (3) $\vec{A} \cdot \vec{B} = 48$ (4) A = 5

Ε

			i				_				
14.	A force $(3\hat{i}+2\hat{j})N$ displa	aces an object through a	21.		tive force (EM	F) is :					
	distance $(2\hat{i}-3\hat{j})m$. The	work done is :		(1) scalar							
	(1) zero	(2) 12 J		(2) vector]						
	(1) <u>Zelo</u> (3) 5J	(2) 12 0 (4) 13 J			r scalar nor ve F thasa	ctor					
	_		22.	(4) none of theseA physical quantity which has a direction :(1) must be a vector							
15.	A vector F_1 is along the pos	sitive X-axis. If its vector	22.								
	product with another ve	ector $ec{F}_{_2}$ is zero then $ec{F}_{_2}$			(1) must be a vector(2) may be a vector						
	may be :			(2) may be (3) must be							
	⁽¹⁾ 4 i	(2) $-(\hat{i} + \hat{j})$			f the above						
	5		23.			ysical quantit	ies is an axial				
	(3) $(\hat{i} + \hat{k})$	⁽⁴⁾ (-4 i)		vector ?	51 -	4 I					
16.	If \hat{i} , \hat{i} and \hat{k} are unit v	rectors along X, Y & Zaxis		(1) displa	cement	(2) force					
	respectively, then tick t			(3) velocity	7	(4) torque					
			24.				ual mangitude				
	(1) $\hat{i} \cdot \hat{i} = 1$	$(2) \hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$			o produce a ze		s:				
	(3) $\hat{i} \cdot \hat{j} = 0$	(4) $\hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{i}}$		(1) 2		(2) 3					
				(3) 4		(4) more t					
17.	Two vectors \vec{p} and \vec{Q} are	inclined to each other at	25.		How many minimum number of coplanar vectors having different magnitudes can be added to give						
	and $e heta$. Which of the fol	lowing is the unit vector		zero result		cuues can be	auleu lo give				
	perpendicular to $ec{p}$ and	\vec{Q} ?		(1) 2	(2) 3	(3) 4	(4) 5				
	$\vec{\mathbf{p}}$	ĥ. Ô	26.	How many n	ninimum numbe	r of vectors	in different				
	(1) $\frac{P \times Q}{P.O}$	(2) $\frac{\hat{P} \times \hat{Q}}{\sin \theta}$		planes can be added to give zero resultant:-							
		Shiro		(1) 2		(2) 3					
	(3) $\frac{\hat{P} \times \hat{Q}}{PQ \sin \theta}$	$(4) \underline{\hat{P} \times \vec{Q}}$		(3) 4		(4) 5					
	\bigcirc PQ sin θ	$PQ \sin \theta$	27.				ponents into				
18.	The magnitude of the vect	or product of two vectors		(1) 2	ctor can be sp	(2) 3					
	$ec{A}$ and $ec{B}$ may not be :			(1) 2 (3) 4		(4) Infinite					
	(1) Greater than AB	(2) Less than AB	28.		-he maximum		rectangular				
	(3) Equal to AB	(4) Equal to zero					e split in its				
19.	If $\vec{P} \times \vec{Q} = \vec{R}$, then which \vec{Q}	of the following statements		own plane	2						
	is not true :			(1) 2		(2) 3					
	(1) $\vec{R} \perp \vec{P}$	(2) $\vec{R} \perp \vec{Q}$		(3) 4		(4) Infinite					
		-	29.				rectangular				
	$(3) \vec{R} \perp (\vec{P} + \vec{Q})$	(4) $\vec{R} \perp (\vec{P} \times \vec{Q})$		space ?	ts into which	a vector ca	n be split in				
20.	The vector $\vec{B} = 5\hat{i} + 2\hat{j} - 5\hat{j}$	\hat{k} is perpendicular to the		(1) 2		(2) 3					
_0.				(3) 4		(4) Infinite					
	vector $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ if	S =	30.		r sum of the	forces of 10	newton and 6				
	(1) 1	(2) 4.7		newton ca	n be :						
	(3) 6.3	(4) 8.5		(1) 2N		(2) 8N					
				(3) 18N		(4) 20N					
							29				

Ε.

Pre-Medical

			-					
31.	Vector sum of two force	s of 10N and 6N cannot	20	If the vectors $\left(\hat{i}+\hat{j}+\hat{k} ight)$ and $3\hat{i}$ form two sides of				
	be:		38.	()				
	(1) 4N (3) 12N	(2) 8N (4) 2N		a triangle, then area of the				
32.	The unit vector along $\hat{i} + \hat{j}$			(1) $\sqrt{3}$ unit	(2) $2\sqrt{3}$ unit			
52.	(1) \hat{k}	(2) $\hat{i} + \hat{j}$		(3) $\frac{3}{\sqrt{2}}$ unit	(4) $3\sqrt{2}$ unit			
	$(3) \ \frac{\hat{i} + \hat{j}}{\sqrt{2}}$	$(4) \frac{\hat{\mathbf{i}} + \hat{\mathbf{j}}}{2}$	39.	Which of the following pair resultant force of $2 \mathrm{N}$:	of forces will never give			
33.	What is the projection of	${ar A}$ on ${ar B}$?		(1) 2 N and 2 N (3) 1 N and 3 N	(2) 1 N and 1 N (4) 1 N and 4 N			
	(1) $\vec{A}.\vec{B}$	(2) $\vec{A}.\hat{B}$	40.	If $\hat{\mathbf{n}} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}}$ is perpendic	ular to the vector $(\hat{i} + \hat{j})$,			
	(3) B . A	(4) $\hat{A}.\hat{B}$		then the value of a and b				
34.	What is the angle between	$ec{A}$ and the resultant of		(1) 1, 0	(2) -2, 0			
	$\left(\vec{A}+\hat{B}\right)$ and $\left(\vec{A}-\hat{B}\right)$?			(3) 3, 0	(4) $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$			
	(1) 0°	(2) $\tan^{-1}\left(\frac{A}{B}\right)$	41.	Two forces, each numerica acting as shown in the foll Their resultant is :				
	(3) $\tan^{-1}\left(\frac{\mathbf{B}}{\mathbf{A}}\right)$	(4) $\tan^{-1}\left(\frac{\mathbf{A}-\mathbf{B}}{\mathbf{A}+\mathbf{B}}\right)$		 (1) 10 dyne (2) 20 dyne (3) 10√3 dyne 	$h_0 = 60^\circ$			
35.	The angle between vectors	s $\mathbf{\hat{e}}$ + $\hat{j}\mathbf{j}$ and $\mathbf{\hat{e}}$ + $\hat{k}\mathbf{j}$ is :		(4) 5 dyne	10 dyne			
	(1) 90°	(2) 180°	42.	What is the component of	$(\hat{3}\hat{i}+\hat{4}\hat{j})$ along $(\hat{i}+\hat{j})$?			
	(3) 0°	(4) 60°		(1) $\frac{1}{2}(\hat{j} + \hat{i})$	(2) $\frac{3}{2}(\hat{j}+\hat{i})$			
36.	The angle between to	wo vectors given by		$(1)^{2} 2^{(j+1)}$	$2^{(j+1)}$			
	$(6\hat{i} + 6\hat{j} - 3\hat{k})$ and $(7\hat{i} + 4\hat{k})$	$\hat{j} + 4\hat{k})$ is :		$(3) \frac{5}{2}(\hat{j}+\hat{i})$	$(4) \frac{7}{2}(\hat{j}+\hat{i})$			
	(1) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	(2) $\cos^{-1}\left(\frac{5}{\sqrt{3}}\right)$	43.	If $\vec{A} + \vec{B} = \vec{C}$ and $A + B = \vec{C}$	C, then the angle between			
				$ec{A}$ and $ec{B}$ is :				
	(3) $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$	$(4) \sin^{-1}\left(\frac{\sqrt{5}}{3}\right)$		(1) 0	(2) $\frac{\pi}{4}$			
37.	Which of the following vect	or identities is false ?		(3) $\frac{\pi}{2}$	(4) π			
57.	(1) $\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$		44.	If $ec{A}+ec{B}$ is a unit vec	tor along x-axis and			
	(2) $\vec{P} + \vec{Q} = \vec{Q} \times \vec{P}$			$\vec{A}=\hat{i}-\hat{j}+\hat{k}$, then what is	s B ?			
	(3) $\vec{P}.\vec{Q} = \vec{Q}.\vec{P}$			(1) $\hat{j} + \hat{k}$	(2) $\hat{j} - \hat{k}$			
	(4) $\vec{P} \times \vec{Q} \neq \vec{Q} \times \vec{P}$			$(3) \hat{i} + \hat{j} + \hat{k}$	(4) $\hat{i} + \hat{j} - \hat{k}$			

	($\vec{\mathbf{p}}$) $(\vec{\mathbf{r}} \cdot \vec{\mathbf{p}})$	52.	What happens, when we mui	ltiply a vector by (-2) ?			
45.	What is the value of $\left(ec{A} + ight)$	$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{A} \times \mathbf{B})$?		(1) direction reverses and unit changes				
	(1) 0	(2) $A^2 - B^2$		(2) direction reverses ar(3) direction remains un	nd magnitude is doubled Inchanged and unit changes			
	(3) $A^2 + B^2 + 2AB$			(4) none of these				
46.	If $\vec{A} \times \vec{B} = \vec{0}$ and $\vec{B} \times \vec{C} = \vec{0}$, then the angle between	53.	If a unit unctor is room	$control by 0.5^{\circ} = 0.8^{\circ} + 1^{\circ}$			
	\vec{A} and \vec{C} may be :		55.	then the value of 'c' is :	sented by $0.5\hat{i} - 0.8\hat{j} + c\hat{k}$,			
		π		(1) 1	(2) $\sqrt{0.11}$			
	(1) zero	(2) $\frac{\pi}{4}$		(3) $\sqrt{0.01}$	(4) $\sqrt{0.39}$			
	_ π			$\bigcirc \sqrt{0.01}$	(±/ V0.39			
	(3) $\frac{\pi}{2}$	(4) none of these	54.	For a body, angular velc	which $\vec{\omega}$ = \hat{i} - $2\hat{j}$ + $3\hat{k}$ and			
47.	The resultant of \vec{A} and \vec{E}	is perpendicular to $ec{A}$.		radius vector $(\vec{r}) = \hat{i} + \hat{j}$	+ \hat{k} , then its velocity is:			
	What is the angle betwe	en $ec{A}$ and $ec{B}$?		(1) $-5\hat{i} + 2\hat{j} + 3\hat{k}$				
	(1) $\cos^{-1}\left(\frac{A}{B}\right)$	(2) $\cos^{-1}\left(-\frac{A}{B}\right)$		(2) $-5\hat{i} + 2\hat{j} - 3\hat{k}$				
	(B)	(В)		(3) $-5\hat{i} - 2\hat{j} + 3\hat{k}$				
	(3) $\sin^{-1}\left(\frac{A}{B}\right)$	(4) $\sin^{-1}\left(-\frac{A}{B}\right)$		(4) $-5\hat{i} - 2\hat{j} - 3\hat{k}$				
	(-)	-	55.	If $\vec{P}.\vec{Q}$ = PQ, then angle	e between $ec{p}$ and $ec{Q}$ is :			
48.	The resultant of $ec{A}$ & $ec{B}$	is \mathbf{R}_1 . On reversing the		(1) 0°	(2) 30°			
	vector $ec{\mathrm{B}}$, the resultant	becomes $\vec{R}_2^{}$. What is the		(3) 45°	(4) 60°			
	value of $R_1^2 + R_2^2$?		56.		tors is a unit vector, then			
	(1) $A^2 + B^2$	(2) $A^2 - B^2$		the magnitude of their dif				
	(3) $2(A^2 + B^2)$	(4) $2(A^2 - B^2)$		(1) $\sqrt{2}$	(2) $\sqrt{3}$			
49.	Given that $A = B$. What is	the angle between $(\vec{A} + \vec{B})$		(3) $\frac{1}{\sqrt{2}}$	(4) $\sqrt{5}$			
	and $(\vec{A}-\vec{B})$?			$\sqrt{2}$	(,,,,)			
	(1) 30°	(2) 60°	57.	The magnitudes of vector	ors $ec{A}$, $ec{B}$ and $ec{C}$ are re-			
	(3) 90°	(4) 180 [°]			mits and $\vec{A} + \vec{B} = \vec{C}$, then			
50.	The angle betweer	the two vectors						
	$\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and \vec{B}	$= 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be :		the angle between \vec{A} and (1) 0	(2) 45°			
	(1) zero	(2) 180°		(1) $\pi/2$	(4) $\pi/4$			
	(3) 90°	(4) 45°	58.	Let $\vec{A} = \hat{i}ACos\theta + \hat{j}ASin\theta$), be any vector. Another			
51.	The forces, which meet at of action do not lie in one			vector $ec{B}$ which is normal				
	(1) non-coplanar and non-			(1) $\hat{i}BCos\theta + \hat{j}BSin\theta$				
	(2) coplanar and non-cond			(2) $\hat{i}BSin\theta + \hat{j}BCos\theta$				
	(3) non-coplanar and cond			(3) $\mathbf{\hat{i}}\mathbf{B}\mathbf{Sin}\mathbf{\theta} - \mathbf{\hat{j}}\mathbf{B}\mathbf{Cos}\mathbf{\theta}$				
	(4) coplanar and concurre			(4) $\hat{i}ACos\theta - \hat{j}ASin\theta$				
				(7) IACUSO – JASINO				
					31			

Pre-Medical

- 59. Force 3N, 4N and 12N act at a point in mutually perpendicular directions. The magnitude of the resultant force is:
 (1) 19 N
 (2) 13 N
 - (3) 11 N (4) 5 N
- 60. If vectors \vec{p} , \vec{Q} and \vec{R} have magnitudes 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$, the angle between \vec{Q} and \vec{R} is :
 - (1) $\cos^{-1}\left(\frac{5}{12}\right)$ (2) $\cos^{-1}\left(\frac{5}{13}\right)$ (3) $\cos^{-1}\left(\frac{12}{13}\right)$ (4) $\cos^{-1}\left(\frac{2}{13}\right)$
- 61. The sum of magnitudes of two forces acting at a point is 16N. If the resultant force is 8N and its direction is perpendicular to smaller force, then the forces are :

(1)	6N & 10N	(2) 8N & 8N
(3)	4N & 12N	(4) 2N & 14N

62. At what angle must the two forces (x + y) and (x - y)

act so that the resultant may be $\sqrt{\left(x^2+y^2\right)}\,?$

(1)
$$\cos^{-1}\left[\frac{-(x^2+y^2)}{2(x^2-y^2)}\right]$$
 (2) $\cos^{-1}\left[\frac{-2(x^2-y^2)}{x^2+y^2}\right]$
(3) $\cos^{-1}\left[\frac{-(x^2+y^2)}{x^2-y^2}\right]$ (4) $\cos^{-1}\left[\frac{(x^2-y^2)}{x^2+y^2}\right]$

63. Given that P = Q = R. If $\vec{P} + \vec{Q} = \vec{R}$ then the angle between $\vec{P} \& \vec{R}$ is θ_1 . If $\vec{P} + \vec{Q} + \vec{R} = \vec{0}$ then the angle between $\vec{P} \& \vec{R}$ is θ_2 . What is the relation between θ_1 and θ_2 :

(1)
$$\theta_1 = \theta_2$$
 (2) $\theta_1 = \frac{\theta_2}{2}$

(3) $\theta_1 = 2\theta_2$

(4) None of the above

- 64. Given that $\vec{A} + \vec{B} + \vec{C} = \vec{0}$. Out of these three vectors two are equal in magnitude and the magnitude of the third vector is $\sqrt{2}$ times as that of either of the two having equal magnitude. Then the angles between vectors are given by :
 - (1) 30°, 60°, 90°(2) 45°, 45°, 90°(3) 45°, 60°, 90°(4) 90°, 135°, 135°
- **65.** The resultant of two vectors \vec{p} and \vec{Q} is \vec{R} . If \vec{Q} is doubled then the new resultant vector is perpendicular to ' \vec{p} '. Then R is equal to :

(1)
$$\left(\frac{\mathbf{P}^2 - \mathbf{Q}^2}{2\mathbf{P}\mathbf{Q}}\right)$$
 (2) Q

(3)
$$\frac{P}{Q}$$
 (4) $\frac{P+Q}{P-Q}$

- - (1) $l \cos(\theta/2)$ (2) $2l \sin(\theta/2)$ (3) $2l \cos(\theta/2)$ (4) $l \sin(\theta/2)$

se Que oth Ass oth Ass ssertio oth Ass rtion : isplacen m : A p	stions you certion & I certion & I n is True b certion & I	nsist of two s are required Reason are 7 Reason are 7 out the Reaso Reason are f		h, prir yone c son is :	nted as Assert	ion and R ng four resp anation of	ponses.	e answering
se Que oth Ass oth Ass ssertio oth Ass rtion : isplacen m : A p	stions you certion & I certion & I n is True b certion & I If the initi	are required Reason are 7 Reason are 7 out the Reaso Reason are f	d to choose any frue & the Rea frue but Reaso on is False.	yone o son is	of the followin a correct expl	ng four resp anation of	ponses.	e answering
oth Ass ssertio oth Ass rtion : isplacen on : A p	ertion & l n is True b ertion & l If the initi	Reason are 7 out the Reaso Reason are f	Frue but Reaso on is False.				the Ascertic	
ssertio oth Ass rtion : isplacen on : A p	n is True b certion & I If the initi	out the Reaso Reason are f	on is False.	nisno	t a correct exp	1		»n.
oth Ass rtion : isplacen on : A p	ertion & l If the initi	Reason are f				olanation	of the Assert	ion.
rtion : isplacen m : A p	If the initi		àlse.					
isplacen m : A p		ialandfinalm						
m :Ap			sitions coincide,	6.	Assertion :	: The angle	between vect	ors $\vec{A} \times \vec{B}$ an
r, if its	hysical qu		ot be called a		$ec{\mathrm{B}} imes ec{\mathrm{A}}$ is $\pmb{\pi}$ r	adian.		
	magnitude is	s zero.			Reason : \vec{B}	$\times \vec{A} = -\vec{A}$	$\vec{A} \times \vec{B}$	
	(2) B	(3) C	(4) D		(1) A		(2) B	
			antity that has		(3) C		(4) D	
ngle la lelogra	w of addi [.] mlawof ad	tion or equi dition.	and obeys the valently the	7.		gnitude r		of vectors o produce zero
ro giver	n vectors o		ultant vector less than the		which can be	e represent	ors of unequ ted by the th , produce zero	ree sides of
	(2) B	(3) C	(4) D		(1) A		(2) B	
rtion : erminat		tion of a zero ((null) vector is		(3) C		(4) D	
			→, → →	8.	Assertion :	A vector	can have zero	magnitude i
	e can have	$A \times B = A.H$	\vec{B} with $\vec{A} \neq \vec{0}$		one of its a			
$\vec{\mathbf{B}} \neq \vec{0} \cdot$							t of two vect	tors cannot b
	(2) B	(3) C	(4) D		a negative qu (1) A	(2) B	(3) C	(4) D
	IN and 7N,	-	mponents of a mitude of the	9.	Assertion :	The angle	e between the	e two vector.
		1 then $ \vec{A} \times \vec{A} $	$\vec{B}\Big ^2 + \left \vec{A}.\vec{B}\right ^2 = 1$		$\mathbf{\hat{e}}$ + $\hat{j}\mathbf{j}$ and 0	5		
	(2) B	(3) C	(4) D		Reason : Ar	ngle betwee	en two vector	$rs{}^{-}_{A}$ and ${}^{-}_{B}$ i
rtion :	If three v	rectors \vec{A} , \vec{B}	and \vec{C} satisfy		given by θ =	\cos^{-1}	<u>∃</u> 3.	
relatic	n \vec{A} . \vec{B} =0	$\& \vec{A} \cdot \vec{C} = 0$ the	en the vector			141	· I	
y be pa	rallel to j	$\vec{B} \times \vec{C} \cdot$			(1) A		(2) B	
	$\vec{A} + \vec{B} = \vec{R}$	and $A + B = 1$	R, then angle	10	(3) C	Dictore :	(4) D	ntitu
m: If			,	10.			-	-
_								(4) D
	ybepa: m: If	y be parallel to	y be parallel to $\vec{B} \times \vec{C}$. $m : \text{If } \vec{A} + \vec{B} = \vec{R} \text{ and } A + B =$ en \vec{A} and \vec{B} is zero.	\mathbf{m} : If $\vec{A} + \vec{B} = \vec{R}$ and $A + B = R$, then angle en \vec{A} and \vec{B} is zero.	y be parallel to $\vec{B} \times \vec{C}$. $m: \text{ If } \vec{A} + \vec{B} = \vec{R} \text{ and } A + B = R$, then angle 10. en \vec{A} and \vec{B} is zero.	y be parallel to $\vec{B} \times \vec{C}$. (1) A (3) C 10. Assertion : en \vec{A} and \vec{B} is zero. (1) A (3) C 10. Assertion : Reason : Dis	y be parallel to $\vec{B} \times \vec{C}$. (1) A (3) C 10. Assertion : Distance i Reason : Distance is the (1) A (3) C 10. Assertion : Distance is the (1) A (3) C (1) A (1) A (y be parallel to $\vec{B} \times \vec{C}$. (1) A (2) B (3) C (4) D 10. Assertion: Distance is a scalar quar Reason: Distance is the length of parallel (1) A (2) B (3) C (4) D (4) D (4) D (5) C (4) D (6) C (6) C (7) C

Pre-Medical

11.	Assertion	: If positi	on vector	is given	13.		-		e vector with	
	by $\vec{r} = \sin t \hat{i}$	$+\cos t\hat{j}-7t$	\hat{k} ,then mag	nitude of			-	scalar or a		
	acceleration	$ \vec{a} = 1$.					-	of two vecto s called a do	rs is a vector t product.	
	Reason :	The angle	es which th	ne vector					[AIIMS 1998]	
						(1) A	(2) B	(3) C	(4) D	
	$\mathbf{A} = \mathbf{A}_1 \mathbf{i} + \mathbf{A}_1 \mathbf{i} + \mathbf{A}_2 \mathbf{i}$	$A_2 j + A_3 k$ mai	kes with the o	co-ordinate	linate 14.	Assertion	: A physical	l quantity ca	an be regarded	
	axes are gi	ven by $\cos lpha$	$=\frac{A_1}{A}$, $\cos\beta=$	$=\frac{A_2}{A}$ & cos γ		as a vector, sociatedwith	2		irection is as- [AIIMS 2000]	
			11	11		Reason :	A physical	l quantity ca	an be regarded	
	$=\frac{A_3}{A}$.					as a scalar o tude only.	quantity, if	it is associat	ted with magni-	
	(1) A	(2) B	(3) C	(4) D		(1) A	(2) B	(3) C	(4) D	
12.	Assertion	: Adding a sca	lar to a vecto	r of the same	15.	Assertion	: Vector (î -	$\hat{j} + \hat{k}$) is pe	erpendicular to	
	dimensions i	is a meaningfi	ul algebraic c	peration.		· · · ·				
	Reason : T	he displace	ment can be	added with		$(\hat{i} - 2\hat{j} + \hat{k})$			[AIIMS 2009]	
	distance.					Reason : Tw	o non-zero v	vectors are p	perpendicular	
	(1) A	(2) B	(3) C	(4) D		if their dot	product is e	qual to zero.		
						(1) A	(2) B	(3) C	(4) D	

AN	SW	ER	KEY	7								EX	ERC	SISE	- 1
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	1	1	2	3	4	4	1	2	3	4	4	3	3	1
Que.	16	17	18	19	20	21									
Ans.	4	2	2	1	1	4									
ANSWER KEY EXERCISE - II															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	2	1	2	2	3	3	3	3	2	2	3	1	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	1	4	4	1	2	4	1	2	3	4	1	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	3	2	1	4	4	2	3	4	4	1	4	1	2	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	2	3	3	3	3	2	2	1	1	2	3	3	2	3
Que.	61	62	63	64	65	66									
Ans.	1	1	2	4	2	2									
AN	SW	ER	KEY	7								EXE	RCI	SE	• 111

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	3	2	2	1	2	4	1	1	2	4	4	2	1